stabm: Stability Measures for Feature Selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stability index for feature selection

Sequential forward selection (SFS) is one of the most widely used feature selection procedures. It starts with an empty set and adds one feature at each step. The estimate of the quality of the candidate subsets usually depends on the training/testing split of the data. Therefore different sequences of features may be returned from repeated runs of SFS. A substantial discrepancy between such se...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Radiometric Measures for Feature Selection In Visual Servoing

The following paper discusses the issue of radiometric constraints for feature selection in the context of visual servoing. Here radiometric constraints are presented and measures are formulated to select the most optimal features in a radiometric sense from the set of candidate features. Experiment results verify the effectiveness of the proposed measures.

متن کامل

Measuring the Stability of Feature Selection

In feature selection algorithms, “stability” is the sensitivity of the chosen feature set to variations in the supplied training data. As such it can be seen as an analogous concept to the statistical variance of a predictor. However unlike variance, there is no unique definition of stability, with numerous proposed measures over 15 years of literature. In this paper, instead of defining a new ...

متن کامل

Improving Stability of Feature Selection Methods

An improper design of feature selection methods can often lead to incorrect conclusions. Moreover, it is not generally realised that functional values of the criterion guiding the search for the best feature set are random variables with some probability distribution. This contribution examines the influence of several estimation techniques on the consistency of the final result. We propose an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Open Source Software

سال: 2021

ISSN: 2475-9066

DOI: 10.21105/joss.03010